
ROS-Industrial Basic Developer’s
Training Class

Southwest Research Institute

1

July 2023

Session 1:
ROS Basics

Southwest Research Institute

2

Outline

• Intro to ROS

• ROS Workspaces & Colcon

• Installing packages (existing)

• Packages (create)

• Nodes

• Messages / Topics

3

An Introduction to ROS

4

(Image taken from Willow Garage’s “What is ROS?” presentation)

ROS1 and ROS2

• ROS1 has been around since 2008

– Uses custom TCP/IP middleware

• ROS2 is a ground-up reimagining of ROS

– Started in 2014

– Built on DDS, middleware proven in industry

– Now on 9th named release (Iron)

5

This class will focus on

ROS2 Humble

ROS1 and ROS2

• Community is currently in transition!

– Final ROS1 release (Noetic) is out (EOL in 2025)

– All critical features are now supported in ROS2

• ROS-Industrial will take time to transition

– Many breaking changes / conceptual differences

– Vision is industrial robots will become native ROS
devices

6

ROS Versions

7

Box Turtle … Lunar Melodic Noetic EOL

Mar 2010 … 2017 - 2019 2018 - 2023 2020 - 2025

Ardent … Foxy (LTS) Galactic Humble

Dec 2018 … 2020 - 2023 2021 - 2022 2022-2027

ROS 1

ROS 2

ROS : The Big Picture

All robots are:

Software connecting Sensors to Actuators
to interact with the Environment

8

software

sensors

environment

actuators

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

ROS : The Big Picture

• Break Complex Software into Smaller Pieces

• Provide a framework, tools, and interfaces for distributed development

• Encourage re-use of software pieces

• Easy transition between simulation and hardware

9

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

sensors

environment

actuators

Our Approach: Collaboration, Modularity, and Simulation

= + + +

Plumbing Tools Capabilities Ecosystem

What is ROS?

ROS is…

(Adapted from Willow Garage’s “What is ROS?” Presentation)

10

11

ROS is… plumbing

Publisher

Publisher

Subscriber

Subscriber

/topic

ROS Plumbing : Drivers

12

● 2d/3d cameras
● laser scanners
● robot actuators
● inertial units
● audio
● GPS
● joysticks
● etc.

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

ROS is …Tools

13

•logging/plotting
•graph visualization
•diagnostics
•visualization

(Adapted from Willow Garage’s “What is ROS?” Presentation)

ROS is…Capabilities

14

Execution

Planning

Perception

(Adapted from Willow Garage’s “What is ROS?” Presentation)

ROS is… an Ecosystem

15

http://metrorobots.com/rosmap.html

ROS is a growing Ecosystem

16

https://metrics.ros.org/

ROS is International

17

unique wiki visitors Jul 2020

visitors per million people

1. Singapore: 683
2. Hong Kong: 475
3. Taiwan: 252
4. South Korea: 244
5. Germany: 175
...
9. USA: 96

(http://wiki.ros.org/Metrics “Community Metrics Report” August 2020)

ROS is a Repository

18

ros_comm
("core")

100 KLOC

desktop-full
("core+tools")

400 KLOC

all buildfarm
("universe")
4000 KLOC

only includes publicly released
code!

(From Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics”)

ROS Programming

• ROS uses platform-agnostic methods for most
communication
– DDS, TCP/IP Sockets, XML, etc.

• Can intermix programming languages

– Current 1st Tier support: C, C++, Python

– We will be using C++ for our exercises

19

ROS Resources

20

?

Package
wiki

ROS-I
wiki/github

ROS
Answers

ROS
website

ROS.org Website

• Install Instructions

• ROS Answers

• Forums (Discourse)

21

http://ros.org

ROS1
but still relevant

ROS2 Documentation

• Install

• Tutorials

• Concepts

• APIs

22

http://docs.ros.org

ROS Package Index

23

http://index.ros.org

• Install Instructions

• Tutorials

• Package Info

• Still NEW – see ROS1 Wiki

Package Wiki

• Description / Usage
• Tutorials
• Code / Msg API
• Source-Code Link
• Bug Reporting

24

http://wiki.ros.org/<packageName>

“ROS1 Only”
But still relevant for most

packages

ROS Answers

25

http://answers.ros.org

• Quick responses to Good Questions

• Search by text or tag

• Don’t re-invent the wheel!

https://robotics.stackexchange.com

ROS is a Community

• No Central “Authority” for Help/Support

– Many users can provide better (?) support

– ROS-I Consortium can help fill that need

• Most ROS-code is open-source

– can be reviewed / improved by everyone

– we count on YOU to help ROS grow!

26

What is ROS to you?

Training Goals:

• Show you ROS as a software framework

• Show you ROS as a tool for problem solving

• Apply course concepts to a sample application

• Ask lots of questions and break things.

27

Scan & Plan “Application”

28

ROS Architecture: Nodes

29

• A Node is a standalone piece of functionality
– Most communication happens between nodes

– Nodes can run on many different devices

– Often one node per process, but not always

camera
interface

image
processing

motion
logic

robot
planning

robot
interface

ROS Architecture: Packages

30

camera
interface

image
processing

motion
logic

robot
planning

robot
interface

robot
model

ROS Package
(e.g. Pick-and-Place Task)

multiple
nodes

no
nodes

• ROS Packages are groups of related nodes/data
– Files grouped in a single directory, with key metafiles
– Many ROS commands are package-oriented

ROS Architecture: MetaPkg

31

camera
interface

image
processing

motion
logic

robot
planning

robot
interface

robot
model

ROS MetaPackage
(e.g. fanuc, ros_industrial, ros_desktop, ...)

• Some “MetaPackages” don’t have any content
– Only dependency references to other packages
– Mostly for convenient install/deployment

ROS

Day 1 Progression

❑Install ROS

❑Create Workspace

❑Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ros2 run

❑ros2 launch

ROS
Workspace

My Package

Node

Resource

Package

32

Installing ROS

33

Getting ROS2

34

https://index.ros.org/doc/ros2/Installation/humble/

https://index.ros.org/doc/ros2/Installation/humble/

Exercise 1.0

Exercise 1.0
Basic ROS Install/Setup

35

ROS

Day 1 Progression

✓ Install ROS (check install)

❑Create Workspace

❑Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ros2 run

❑ros2 launch

36

ROS
Workspace

My Package

Node

Resource

Package

Creating a ROS Workspace

37

ROS Workspace

• ROS uses a specific directory structure:
– each “project” typically gets its own workspace

– all packages/source files go in the src directory

– temporary build-files are created in build

– results are placed in install

38

ros_workspace
src

package_1
package_2

build
install

Build System

39

• ROS2 uses the ament build system

– based on CMake

– cross-platform (Ubuntu, Windows, embedded...)

– simplifies depending on packages and exporting
outputs to other packages

Build System

40

• ROS2 also uses the colcon build tool
– Pure Python framework

– Generates the workspace outputs:
• Finds all packages in the src directory

• Defines the build order based on dependencies

• Invokes the build system for each package
– CMake/Ament for C++ packages

– Setuptools for pure Python packages

– Can build ROS1 packages
• but some packages may prefer to be built with the ROS1-

legacy “catkin” build tools.

Colcon Build Process

Setup (one-time)

1. Create a workspace (arbitrary name and location)
• ros_ws

• src sub-directory must be created manually

• build, install directories created automatically

2. Download/create packages in src subdir

Compile-Time

1. Run colcon build from the workspace root

2. Run source install/setup.bash to make this
workspace visible to ROS

41

Colcon Build Notes

Colcon Build
– Always run from the workspace root
– Source workspaces of any dependencies before running build.

• e.g. source /opt/ros/humble/setup.bash

– Can chain multiple workspaces together:
• base humble -> pcl_ws -> my_ws

– Don’t run from a terminal where you have “sourced” this
workspace’s setup file (can cause circular issues).

➢ Best Practice: Use a dedicated terminal window for building.
• Don’t do anything in that terminal window other than colcon build.

Source install/setup.bash
– Remember to source this setup file in EACH new terminal
– No need to also source the underlays’ setup files
– May need to re-source after adding new packages
– Can add to ~/.bashrc to automate this step

• not recommended if using multiple ROS distros or working on
multiple projects in parallel

42

Exercise 1.1

Exercise 1.1
Create a ROS Workspace

43

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

❑Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ ros2 run

❑ ros2 launch

44

ROS
Workspace

My Package

Node

Resource

Package

Add 3rd-Party Packages
(a.k.a. “Resource” Packages)

45

Install options

Debian Packages

• Nearly “automatic”

• Recommended for
end-users

• Stable

• Easy

Source Repositories

• Access “latest” code

• Most at Github.com

• More effort to setup

• Unstable*

46

Can mix both options, as needed

Finding the Right Package

• ROS Website (http://index.ros.org)

– Search for known packages

• ROS Answers (http://answers.ros.org)

– When in doubt... ask someone!

– Migrating to https://robotics.stackexchange.com

47

http://index.ros.org/
http://answers.ros.org/
https://robotics.stackexchange.com/

Install using Debian Packages

sudo apt install ros-humble-package

48

• Fully automatic install:
• Download .deb package from central ROS repository
• Copies files to standard locations (/opt/ros/humble/...)

➢Also installs any other required dependencies

• sudo apt-get remove ros-<distro>-<package>

• Removes software (but not dependencies!)

admin
permissions

manage
“.deb”

install
new “.deb”

all ROS pkgs
start with ros-

ROS
distribution

ROS package
name

Use “-” not “_”

Installing from Source

49

• Find GitHub repo

• Clone repo into your workspace src directory

• Build your colcon workspace

• Now the package and its resources are
available to you

cd ros_ws/src

git clone http://github.com/user/repo.git

cd ros_ws

colcon build

Exercise 1.2

Exercise 1.2
Install “resource” packages

50

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

✓ Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ ros2 run

❑ ros2 launch

51

ROS
Workspace

My Package

Node

Resource

Package

ROS Packages

52

ROS Package Contents

• ROS components are organized into packages
• Packages contain several required files:

– package.xml

• metadata for ROS: package name, description, dependencies, ...

– CMakeLists.txt

• build rules for ament

53

required
files

package source-files
(vs. workspace src dir)

package
directoryros_ws

src
robotpkg
package

build
install

package.xml

• Metadata: name, description, author, license ...

54

package.xml

• Metadata: name, description, author, license ...

• Dependencies:
– Common

• <buildtool_depend>: Needed to build itself. (Typically ament_cmake)

• <build_depend>: Needed to build this package.

• <exec_depend>: Needed to run code in this package.

• <depend>: Needed to build, export, and execution dependency.

– Uncommon
• <build_export_depend>: Needed to build against this package.

• <test_depend>: Only additional dependencies for unit tests.

• <doc_depend>: Needed to generate documentation.

55

CMakeLists.txt

• Provides rules for building software
– template file contains many examples

add_executable(myNode src/myNode.cpp src/widget.cpp)

Builds program myNode, from myNode.cpp and widget.cpp

ament_target_dependencies(myNode rclcpp std_msgs)

Links node myNode to dependency headers and libraries

install(TARGETS myNode DESTINATION lib/${PROJECT_NAME})

Copies nodes/libraries to workspace’s “install” directory

56

ROS Package Commands

• ros2 pkg

– ros2 pkg create package_name
Create a new package, including template files

Common options (not required, but will help pre-fill templtes):

 --build-type ament_cmake

 --node-name my_node

 --dependencies dep_pkg_1 dep_pkg_2

– ros2 pkg prefix package_name
Show directory where package_name is installed

– ros2 pkg list
List all ros packages installed (this is a BIG LIST!)

– ros2 pkg xml package_name
Show the package.xml file of package_name

57

Create New Package

Easiest way to start a new package
– create directory, required template files

– mypkg : name of package to be created

– mynode : name of node (main executable)

– dep1/2 : dependency package names
• automatically added to CMakeLists and package.xml

• can manually add additional dependencies later

58

ros2 pkg create mypkg --node-name mynode

 --dependencies dep1 dep2

Exercise 1.3.1

Exercise 1.3.1
Create Package

59

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

✓ Add “resources”

✓ Create Package

❑Create Node
❑Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ ros2 run

❑ ros2 launch

ROS
Workspace

My Package

Resource

Package

60

ROS Nodes

61

A Simple C++ ROS Node

Simple C++ Program

#include <iostream>

int main(int argc, char* argv[])

{

 std::cout << "Hello World!";

 return 0;

}

Simple C++ ROS2 Node

#include <rclcpp/rclcpp.h>

int main(int argc, char* argv[])

{

 rclcpp::init(argc, argv);

 auto node = make_shared<rclcpp::Node>(“hello”);

 RCLCPP_INFO(node->get_logger(), "Hello World!“);

 return 0;

}

62

ROS2 Node Commands

• ros2 run package_name node_name
execute ROS node

• ros2 node

– ros2 node list

View running nodes

– ros2 node info node_name

View node details (publishers, subscribers, services, etc.)

63

Exercise 1.3.2

Exercise 1.3.2
Create a Node:

In myworkcell_core package
called vision_node

65

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

fake_ar_pub

ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

✓ Add “resources”

✓ Create Package

✓ Create Node
✓ Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

✓ Run Node
✓ ros2 run

❑ ros2 launch

ROS
Workspace

My Package

Node

Resource

Package

66

Topics and Messages

67

ROS Topics/Messages

68

msg … msg … msg

Publisher Node

Publishing msg data
On channel /topic

Publisher Node

Advertises /topic is available
with type msg

Subscriber Node

Subscribed to /topic
with type msg

Subscriber Node

Listening for /topic
with type msg

/topic

Topics are for Streaming Data

Topics vs. Messages

• Topics are channels, Messages are data types

– Different topics can use the same Message type

69

camera_1

camera_2

image_processing

image … image …

/camera_1/rgb

image … image …

/camera_2/rgb

Practical Example

70

Calibration Node
Subscribes to
Images from:

/Basler1/image_rect
/Basler2/image_rect
/Basler3/image_rect

…

Basler
Camera Node

sensor_msgs/Image

/Basler1/image_rect

Basler
Camera Node

sensor_msgs/Image

/Basler2/image_rect

Multiple Pub/Sub

• Many nodes can pub/sub to same topic

– comms are direct node-to-node

71

camera_1

image_processing

logger

viewer

/camera_1/rgb

image … image …

Topics : Details

• Each Topic is a stream of Messages:
– sent by publisher(s), received by subscriber(s)

• Messages are asynchronous
– publishers don’t know if anyone’s listening

– messages may be dropped

– subscribers are event-triggered (by incoming messages)

• Typical Uses:
– Sensor Readings: camera images, distance, I/O

– Feedback: robot status/position

– Open-Loop Commands: desired position

72

Quality of Service

• All ROS2 comms define a “Quality of Service” (QoS)

– History/Depth - buffer N prior messages

– Reliability - retry or discard dropped messages?

– Durability - cache messages for late-joining subscribers?

– Deadline - expected interval between messages

– etc.

• All participants in a topic must have compatible QoS

– Publishers - maximum QoS they can provide

– Subscribers - minimum QoS they require
– e.g. “reliable” subscriber won’t connect to “best-effort” publisher

73

QoS Profiles

• ROS provides default QoS profiles for different
comms types.

– Use these defaults, tweak them, or define your
own application-specific QoS.

– Default Profile (messages) queue=10, reliable, volatile

– Services Profile queue=10, reliable, volatile

– Sensor Profile queue=5, best-effort, volatile

– Parameters Profile queue=1000, reliable, volatile

74

ROS Messages Types

• Similar to C structures

• Standard data primitives
– Boolean: bool

– Integer: int8,int16,int32,int64

– Unsigned Integer: uint8,uint16,uint32,uint64

– Floating Point: float32, float64

– String: string

• Fixed length arrays: bool[16]

• Variable length arrays: int32[]

• Other: Nest message types for more complex data
structure

75

Message Description File

• All Messages are defined by a .msg file

76

PathPosition.msg
A 2D position and orientation

std_msgs/Header header

float64 x # X coordinate

float64 y # Y coordinate

float64 angle # Orientation

data
type

field
name

comment

other Msg type

Custom ROS Messages

• Custom message types
are defined in msg
subfolder of packages

• Modify CMakeLists.txt
to enable message
generation.

77

CMakeLists.txt

• Lines needed to generate custom msg types

find_package(rosidl_default_generators

REQUIRED)

rosidl_generate_interfaces(

 msg/CustomMsg.msg

 DEPENDENCIES ...)

78

package.xml

<build_depend> rosidl_default_generators </build_depend>

<exec_depend>rosidl_default_runtime</exec_depend>

<member_of_group>rosidl_interface_packages</member_of_group>

79

ROS Interface Commands

These commands show info about known ROS message
types (+ services/actions, discussed later)

• ros2 interface list

– Show all ROS message types currently available

• ros2 interface package <package>

– Show all ROS message types in package <package>

• ros2 interface show <package>/<message_type>

– Show the structure of the given message type

80

ROS Topic Commands

• ros2 topic list

– List all topics currently subscribed to and/or publishing

• ros2 topic type <topic>

– Show the message type of the topic

• ros2 topic info <topic>

– Show topic message type, subscribers, publishers, etc.

• ros2 topic echo <topic>

– Echo messages published to the topic to the terminal

• ros2 topic find <message_type>

– Find topics of the given message type

81

“Real World” – Messages

• Use rqt_msg to view:
– sensor_msgs/JointState

– trajectory_msgs/JointTrajectory

– sensor_msgs/Image

– rcl_interfaces/Log

82

• Topic Publisher
– Advertises available topic (Name, Data Type, QoS)

– Populates message data

– Periodically publishes new data

Topics: Syntax

83

auto pub = node->create_publisher<PathPosition>(“/position”, qos);

PathPosition msg;

msg.x=xVal; msg.y=yVal; ...

pub->publish(msg);

rclcpp::spin_some(node);

Node Object Create Publisher Message Type

Background
Process

Topic Name Quality of
Service

Message Data

Publish Message

• Topic Subscriber

– Defines callback function

– Listens for available topic (Name, Data Type, QoS)

Topics: Syntax

84

void msg_callback(const PathPosition& msg) {

 RCLCPP_INFO_STREAM(node->get_logger(), “Received msg: “ << msg);

}

auto sub = node->create_subscription(“/topic”, qos, msg_callback);

Callback Function Message Type Message Data (IN)

Server Object Service Name Callback Ref

Namespaces

• ROS requires unique names for nodes/topics/etc.
• Namespaces allow separation:

– Similar nodes can co-exist, in different “namespaces”
– relative vs. absolute name references

85

robot_1

lft_camera

rt_camera

image

/rosout

image

/rosout

lft_camera/image

/rosout

rt_camera/image

robot_2

lft_camera

rt_camera

image

/rosout

image

/rosout

lft_camera/image

/rosout

rt_camera/image

/robot_1/lft_camera/image

/robot_1/rt_camera/image

/robot_2/lft_camera/image

/robot_2/rt_camera/image

/rosout

Qt

Instead of text editor and building
from terminal…

Use an IDE! (detailed instructions here)

86

1. Launch QtCreator IDE from desktop shortcut
2. File -> New Project
3. Other Project -> ROS Workspace
4. Enter Project Properties:

1. Name = “ROS2_Training” (or whatever)
2. Distribution (should be auto-detected)
3. Build System = Colcon
4. Path = ~/ros2_ws

5. Build -> Build All
1. you should see success in the “Compile” tab

https://ros-qtc-plugin.readthedocs.io/en/latest/

fake_ar_pub

Exercise 1.4

Exercise 1.4
Subscribe to fake_ar_publisher

87

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

AR pose

	Slide 1: ROS-Industrial Basic Developer’s Training Class
	Slide 2: Session 1: ROS Basics
	Slide 3: Outline
	Slide 4: An Introduction to ROS
	Slide 5: ROS1 and ROS2
	Slide 6: ROS1 and ROS2
	Slide 7: ROS Versions
	Slide 8: ROS : The Big Picture
	Slide 9: ROS : The Big Picture
	Slide 10: What is ROS?
	Slide 11: ROS is… plumbing
	Slide 12: ROS Plumbing : Drivers
	Slide 13: ROS is …Tools
	Slide 14: ROS is…Capabilities
	Slide 15: ROS is… an Ecosystem
	Slide 16: ROS is a growing Ecosystem
	Slide 17: ROS is International
	Slide 18: ROS is a Repository
	Slide 19: ROS Programming
	Slide 20: ROS Resources
	Slide 21: ROS.org Website
	Slide 22: ROS2 Documentation
	Slide 23: ROS Package Index
	Slide 24: Package Wiki
	Slide 25: ROS Answers
	Slide 26: ROS is a Community
	Slide 27: What is ROS to you?
	Slide 28: Scan & Plan “Application”
	Slide 29: ROS Architecture: Nodes
	Slide 30: ROS Architecture: Packages
	Slide 31: ROS Architecture: MetaPkg
	Slide 32: Day 1 Progression
	Slide 33
	Slide 34: Getting ROS2
	Slide 35: Exercise 1.0
	Slide 36: Day 1 Progression
	Slide 37
	Slide 38: ROS Workspace
	Slide 39: Build System
	Slide 40: Build System
	Slide 41: Colcon Build Process
	Slide 42: Colcon Build Notes
	Slide 43: Exercise 1.1
	Slide 44: Day 1 Progression
	Slide 45
	Slide 46: Install options
	Slide 47: Finding the Right Package
	Slide 48: Install using Debian Packages
	Slide 49: Installing from Source
	Slide 50: Exercise 1.2
	Slide 51: Day 1 Progression
	Slide 52
	Slide 53: ROS Package Contents
	Slide 54: package.xml
	Slide 55: package.xml
	Slide 56: CMakeLists.txt
	Slide 57: ROS Package Commands
	Slide 58: Create New Package
	Slide 59: Exercise 1.3.1
	Slide 60: Day 1 Progression
	Slide 61
	Slide 62: A Simple C++ ROS Node
	Slide 63: ROS2 Node Commands
	Slide 65: Exercise 1.3.2
	Slide 66: Day 1 Progression
	Slide 67
	Slide 68: ROS Topics/Messages
	Slide 69: Topics vs. Messages
	Slide 70: Practical Example
	Slide 71: Multiple Pub/Sub
	Slide 72: Topics : Details
	Slide 73: Quality of Service
	Slide 74: QoS Profiles
	Slide 75: ROS Messages Types
	Slide 76: Message Description File
	Slide 77: Custom ROS Messages
	Slide 78: CMakeLists.txt
	Slide 79: package.xml
	Slide 80: ROS Interface Commands
	Slide 81: ROS Topic Commands
	Slide 82: “Real World” – Messages
	Slide 83: Topics: Syntax
	Slide 84: Topics: Syntax
	Slide 85: Namespaces
	Slide 86: Qt
	Slide 87: Exercise 1.4

