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Outline

• Intro to ROS

• ROS Workspaces & Colcon

• Installing packages (existing)

• Packages (create)

• Nodes

• Messages / Topics
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An Introduction to ROS
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(Image taken from Willow Garage’s “What is ROS?” presentation)



ROS1 and ROS2

• ROS1 has been around since 2008

– Uses custom TCP/IP middleware

• ROS2 is a ground-up reimagining of ROS

– Started in 2014

– Built on DDS, middleware proven in industry

– Now on 9th named release (Iron)
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This class will focus on 

ROS2 Humble



ROS1 and ROS2

• Community is currently in transition!

– Final ROS1 release (Noetic) is out (EOL in 2025)

– All critical features are now supported in ROS2

• ROS-Industrial will take time to transition

– Many breaking changes / conceptual differences

– Vision is industrial robots will become native ROS 
devices
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ROS Versions
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Box Turtle … Lunar Melodic Noetic EOL

Mar 2010 … 2017 - 2019 2018 - 2023 2020 - 2025

Ardent … Foxy (LTS) Galactic Humble

Dec 2018 … 2020 - 2023 2021 - 2022 2022-2027

ROS 1

ROS 2



ROS : The Big Picture

All robots are:

Software connecting Sensors to Actuators
to interact with the Environment
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software

sensors

environment

actuators

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)



ROS : The Big Picture

• Break Complex Software into Smaller Pieces

• Provide a framework, tools, and interfaces for distributed development

• Encourage re-use of software pieces

• Easy transition between simulation and hardware
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(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

sensors

environment

actuators

Our Approach: Collaboration, Modularity, and Simulation



= + + +

Plumbing Tools Capabilities Ecosystem

What is ROS?

ROS is…

(Adapted from Willow Garage’s “What is ROS?” Presentation)
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11

ROS is… plumbing

Publisher

Publisher

Subscriber

Subscriber

/topic



ROS Plumbing : Drivers
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● 2d/3d cameras
● laser scanners
● robot actuators
● inertial units
● audio
● GPS
● joysticks
● etc.

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)



ROS is …Tools
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•logging/plotting
•graph visualization
•diagnostics
•visualization

(Adapted from Willow Garage’s “What is ROS?” Presentation)



ROS is…Capabilities
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Execution

Planning

Perception

(Adapted from Willow Garage’s “What is ROS?” Presentation)



ROS is… an Ecosystem
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http://metrorobots.com/rosmap.html



ROS is a growing Ecosystem
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https://metrics.ros.org/



ROS is International
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unique wiki visitors Jul 2020

visitors per million people

1. Singapore: 683
2. Hong Kong: 475
3. Taiwan: 252
4. South Korea: 244
5. Germany: 175
...
9.  USA: 96

(http://wiki.ros.org/Metrics “Community Metrics Report” August 2020)



ROS is a Repository
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ros_comm
("core")

100 KLOC

desktop-full
("core+tools")

400 KLOC

all buildfarm
("universe")
4000 KLOC

only includes publicly released 
code!

(From Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics”)



ROS Programming

• ROS uses platform-agnostic methods for most 
communication
– DDS, TCP/IP Sockets, XML, etc.

• Can intermix programming languages

– Current 1st Tier support: C, C++, Python

– We will be using C++ for our exercises
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ROS Resources
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?

Package 
wiki

ROS-I 
wiki/github

ROS 
Answers

ROS 
website



ROS.org Website

• Install Instructions

• ROS Answers

• Forums (Discourse)
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http://ros.org

ROS1
but still relevant 



ROS2 Documentation

• Install

• Tutorials

• Concepts

• APIs
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http://docs.ros.org



ROS Package Index
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http://index.ros.org

• Install Instructions

• Tutorials

• Package Info

• Still NEW – see ROS1 Wiki



Package Wiki

• Description / Usage
• Tutorials
• Code / Msg API
• Source-Code Link
• Bug Reporting
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http://wiki.ros.org/<packageName>

“ROS1 Only”
But still relevant for most 

packages



ROS Answers
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http://answers.ros.org

• Quick responses to Good Questions

• Search by text or tag

• Don’t re-invent the wheel!

https://robotics.stackexchange.com



ROS is a Community

• No Central “Authority” for Help/Support

– Many users can provide better (?) support

– ROS-I Consortium can help fill that need

• Most ROS-code is open-source

– can be reviewed / improved by everyone

– we count on YOU to help ROS grow!
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What is ROS to you?

Training Goals:

• Show you ROS as a software framework

• Show you ROS as a tool for problem solving

• Apply course concepts to a sample application

• Ask lots of questions and break things.
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Scan & Plan “Application”
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ROS Architecture: Nodes
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• A Node is a standalone piece of functionality
– Most communication happens between nodes

– Nodes can run on many different devices

– Often one node per process, but not always

camera
interface

image 
processing

motion
logic

robot
planning

robot
interface



ROS Architecture: Packages
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camera
interface

image 
processing

motion
logic

robot
planning

robot
interface

robot
model

ROS Package
(e.g. Pick-and-Place Task)

multiple
nodes

no
nodes

• ROS Packages are groups of related nodes/data
– Files grouped in a single directory, with key metafiles
– Many ROS commands are package-oriented



ROS Architecture: MetaPkg
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camera
interface

image 
processing

motion
logic

robot
planning

robot
interface

robot
model

ROS MetaPackage
(e.g. fanuc, ros_industrial, ros_desktop, ...)

• Some “MetaPackages” don’t have any content
– Only dependency references to other packages
– Mostly for convenient install/deployment



ROS

Day 1 Progression

❑Install ROS

❑Create Workspace

❑Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ros2 run

❑ros2 launch

ROS   
Workspace

My Package

Node

Resource 

Package
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Installing ROS
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Getting ROS2
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https://index.ros.org/doc/ros2/Installation/humble/

https://index.ros.org/doc/ros2/Installation/humble/


Exercise 1.0

Exercise 1.0
Basic ROS Install/Setup
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ROS

Day 1 Progression

✓ Install ROS (check install)

❑Create Workspace

❑Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ros2 run

❑ros2 launch

36

ROS   
Workspace

My Package

Node

Resource 

Package



Creating a ROS Workspace
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ROS Workspace

• ROS uses a specific directory structure:
– each “project” typically gets its own workspace

– all packages/source files go in the src directory

– temporary build-files are created in build

– results are placed in install

38

ros_workspace
src

package_1
package_2

build
install



Build System
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• ROS2 uses the ament build system

– based on CMake

– cross-platform (Ubuntu, Windows, embedded...)

– simplifies depending on packages and exporting 
outputs to other packages



Build System
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• ROS2 also uses the colcon build tool
– Pure Python framework

– Generates the workspace outputs:
• Finds all packages in the src directory

• Defines the build order based on dependencies

• Invokes the build system for each package
– CMake/Ament for C++ packages

– Setuptools for pure Python packages

– Can build ROS1 packages
• but some packages may prefer to be built with the ROS1-

legacy “catkin” build tools.



Colcon Build Process

Setup (one-time)

1. Create a workspace (arbitrary name and location)
• ros_ws

• src sub-directory must be created manually

• build, install directories created automatically

2. Download/create packages in src subdir

Compile-Time

1. Run colcon build from the workspace root

2. Run source install/setup.bash to make this 
workspace visible to ROS

41



Colcon Build Notes

Colcon Build
– Always run from the workspace root
– Source workspaces of any dependencies before running build.

• e.g. source /opt/ros/humble/setup.bash

– Can chain multiple workspaces together:
• base humble -> pcl_ws -> my_ws

– Don’t run from a terminal where you have “sourced” this 
workspace’s setup file (can cause circular issues).

➢ Best Practice: Use a dedicated terminal window for building.
• Don’t do anything in that terminal window other than colcon build.

Source install/setup.bash
– Remember to source this setup file in EACH new terminal
– No need to also source the underlays’ setup files
– May need to re-source after adding new packages
– Can add to ~/.bashrc to automate this step

• not recommended if using multiple ROS distros or working on 
multiple projects in parallel
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Exercise 1.1

Exercise 1.1
Create a ROS Workspace
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fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node



ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

❑Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ ros2 run

❑ ros2 launch

44

ROS   
Workspace

My Package

Node

Resource 

Package



Add 3rd-Party Packages
(a.k.a. “Resource” Packages)

45



Install options

Debian Packages

• Nearly “automatic”

• Recommended for 
end-users

• Stable

• Easy

Source Repositories

• Access “latest” code

• Most at Github.com

• More effort to setup

• Unstable*

46

Can mix both options, as needed



Finding the Right Package

• ROS Website (http://index.ros.org)

– Search for known packages

• ROS Answers (http://answers.ros.org)

– When in doubt... ask someone!

– Migrating to https://robotics.stackexchange.com 

47

http://index.ros.org/
http://answers.ros.org/
https://robotics.stackexchange.com/


Install using Debian Packages

sudo apt install ros-humble-package

48

• Fully automatic install:
• Download .deb package from central ROS repository
• Copies files to standard locations     (/opt/ros/humble/...)

➢Also installs any other required dependencies

• sudo apt-get remove ros-<distro>-<package>

• Removes software (but not dependencies!)

admin
permissions

manage
“.deb”

install
new “.deb”

all ROS pkgs
start with ros-

ROS
distribution

ROS package 
name

Use “-” not “_”



Installing from Source
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• Find GitHub repo

• Clone repo into your workspace src directory

• Build your colcon workspace 

• Now the package and its resources are 
available to you

cd ros_ws/src

git clone http://github.com/user/repo.git

cd ros_ws

colcon build



Exercise 1.2

Exercise 1.2
Install “resource” packages
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fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node



ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

✓ Add “resources”

❑Create Package

❑Create Node
❑Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ ros2 run

❑ ros2 launch
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ROS   
Workspace

My Package

Node

Resource 

Package



ROS Packages
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ROS Package Contents

• ROS components are organized into packages
• Packages contain several required files:

– package.xml

• metadata for ROS: package name, description, dependencies, ...

– CMakeLists.txt

• build rules for ament

53

required 
files

package source-files
(vs. workspace src dir)

package 
directoryros_ws

src
robotpkg
package

build
install



package.xml

• Metadata: name, description, author, license ...
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package.xml

• Metadata: name, description, author, license ...

• Dependencies:
– Common

• <buildtool_depend>: Needed to build itself. (Typically ament_cmake)

• <build_depend>: Needed to build this package.

• <exec_depend>: Needed to run code in this package.

• <depend>: Needed to build, export, and execution dependency.

– Uncommon
• <build_export_depend>: Needed to build against this package.

• <test_depend>: Only additional dependencies for unit tests.

• <doc_depend>: Needed to generate documentation.
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CMakeLists.txt

• Provides rules for building software
– template file contains many examples

add_executable(myNode src/myNode.cpp src/widget.cpp)

Builds program myNode, from myNode.cpp and widget.cpp

ament_target_dependencies(myNode rclcpp std_msgs)

Links node myNode to dependency headers and libraries

install(TARGETS myNode DESTINATION lib/${PROJECT_NAME})

Copies nodes/libraries to workspace’s “install” directory

56



ROS Package Commands

• ros2 pkg

– ros2 pkg create package_name
Create a new package, including template files

Common options (not required, but will help pre-fill templtes):

 --build-type ament_cmake

 --node-name my_node

 --dependencies dep_pkg_1 dep_pkg_2

– ros2 pkg prefix package_name
Show directory where package_name is installed

– ros2 pkg list
List all ros packages installed (this is a BIG LIST!)

– ros2 pkg xml package_name
Show the package.xml file of package_name

57



Create New Package

Easiest way to start a new package
– create directory, required template files

– mypkg :  name of package to be created

– mynode :  name of node (main executable)

– dep1/2 :  dependency package names
• automatically added to CMakeLists and package.xml

• can manually add additional dependencies later

58

ros2 pkg create mypkg --node-name mynode

                      --dependencies dep1 dep2



Exercise 1.3.1

Exercise 1.3.1
Create Package

59

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node



ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

✓ Add “resources”

✓ Create Package

❑Create Node
❑Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

❑Run Node
❑ ros2 run

❑ ros2 launch

ROS  
Workspace

My Package

Resource 

Package
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ROS Nodes
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A Simple C++ ROS Node

Simple C++ Program

#include <iostream>

int main(int argc, char* argv[]) 

{

 

 std::cout << "Hello World!";

   return 0;

}

Simple C++ ROS2 Node

#include <rclcpp/rclcpp.h>

int main(int argc, char* argv[])

{

  rclcpp::init(argc, argv);

  auto node = make_shared<rclcpp::Node>(“hello”);

  RCLCPP_INFO(node->get_logger(), "Hello World!“);

 

  return 0;

}

62



ROS2 Node Commands

• ros2 run package_name node_name
execute ROS node

• ros2 node

– ros2 node list

View running nodes

– ros2 node info node_name

View node details (publishers, subscribers, services, etc.)

63



Exercise 1.3.2

Exercise 1.3.2
Create a Node:

In myworkcell_core package
called vision_node

65

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

fake_ar_pub



ROS

Day 1 Progression

✓ Install ROS

✓ Create Workspace

✓ Add “resources”

✓ Create Package

✓ Create Node
✓ Basic ROS Node

❑ Interact with other nodes
❑Messages

❑Services

✓ Run Node
✓ ros2 run

❑ ros2 launch

ROS   
Workspace

My Package

Node

Resource 

Package
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Topics and Messages
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ROS Topics/Messages

68

msg … msg … msg

Publisher Node

Publishing msg data
On channel /topic

Publisher Node

Advertises /topic is available
with type msg

Subscriber Node

Subscribed to /topic
with type msg

Subscriber Node

Listening for /topic
with type msg

/topic

Topics are for Streaming Data



Topics vs. Messages

• Topics are channels, Messages are data types

– Different topics can use the same Message type

69

camera_1

camera_2

image_processing

image … image …

/camera_1/rgb

image … image …

/camera_2/rgb



Practical Example

70

Calibration Node
Subscribes to 
Images from:

/Basler1/image_rect
/Basler2/image_rect
/Basler3/image_rect

…

Basler
Camera Node

sensor_msgs/Image

/Basler1/image_rect

Basler
Camera Node

sensor_msgs/Image

/Basler2/image_rect



Multiple Pub/Sub

• Many nodes can pub/sub to same topic

– comms are direct node-to-node
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camera_1

image_processing

logger

viewer

/camera_1/rgb

image … image …



Topics : Details

• Each Topic is a stream of Messages:
– sent by publisher(s), received by subscriber(s)

• Messages are asynchronous
– publishers don’t know if anyone’s listening

– messages may be dropped

– subscribers are event-triggered (by incoming messages)

• Typical Uses:
– Sensor Readings: camera images, distance, I/O

– Feedback: robot status/position

– Open-Loop Commands: desired position
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Quality of Service

• All ROS2 comms define a “Quality of Service” (QoS)

– History/Depth - buffer N prior messages

– Reliability - retry or discard dropped messages?

– Durability - cache messages for late-joining subscribers?

– Deadline - expected interval between messages

– etc.

• All participants in a topic must have compatible QoS

– Publishers - maximum QoS they can provide

– Subscribers - minimum QoS they require
– e.g. “reliable” subscriber won’t connect to “best-effort” publisher

73



QoS Profiles

• ROS provides default QoS profiles for different 
comms types.

– Use these defaults, tweak them, or define your 
own application-specific QoS.

– Default Profile (messages) queue=10, reliable, volatile

– Services Profile queue=10, reliable, volatile

– Sensor Profile queue=5, best-effort, volatile

– Parameters Profile queue=1000, reliable, volatile
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ROS Messages Types

• Similar to C structures

• Standard data primitives
– Boolean: bool

– Integer: int8,int16,int32,int64

– Unsigned Integer: uint8,uint16,uint32,uint64

– Floating Point: float32, float64

– String: string

• Fixed length arrays: bool[16]

• Variable length arrays: int32[]

• Other: Nest message types for more complex data 
structure

75



Message Description File

• All Messages are defined by a .msg file

76

PathPosition.msg
# A 2D position and orientation

std_msgs/Header  header

float64 x     # X coordinate

float64 y     # Y coordinate

float64 angle # Orientation

data
type

field
name

comment

other Msg type



Custom ROS Messages

• Custom message types 
are defined in msg 
subfolder of packages

• Modify CMakeLists.txt 
to enable message 
generation.
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CMakeLists.txt

• Lines needed to generate custom msg types

find_package(rosidl_default_generators 

REQUIRED)

rosidl_generate_interfaces(

  msg/CustomMsg.msg

  DEPENDENCIES ...)

78



package.xml

<build_depend> rosidl_default_generators </build_depend>

<exec_depend>rosidl_default_runtime</exec_depend>

<member_of_group>rosidl_interface_packages</member_of_group>
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ROS Interface Commands

These commands show info about known ROS message 
types (+ services/actions, discussed later)

• ros2 interface list

– Show all ROS message types currently available

• ros2 interface package <package>

– Show all ROS message types in package <package>

• ros2 interface show <package>/<message_type>

– Show the structure of the given message type

80



ROS Topic Commands

• ros2 topic list

– List all topics currently subscribed to and/or publishing

• ros2 topic type <topic>

– Show the message type of the topic

• ros2 topic info <topic>

– Show topic message type, subscribers, publishers, etc.

• ros2 topic echo <topic>

– Echo messages published to the topic to the terminal

• ros2 topic find <message_type>

– Find topics of the given message type
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“Real World” – Messages

• Use rqt_msg to view:
– sensor_msgs/JointState

– trajectory_msgs/JointTrajectory

– sensor_msgs/Image

– rcl_interfaces/Log

82



• Topic Publisher
– Advertises available topic (Name, Data Type, QoS)

– Populates message data

– Periodically publishes new data

Topics: Syntax

83

auto pub = node->create_publisher<PathPosition>(“/position”, qos);

PathPosition msg;

msg.x=xVal; msg.y=yVal; ...

pub->publish(msg);

rclcpp::spin_some(node);

Node Object Create Publisher Message Type

Background 
Process

Topic Name Quality of 
Service

Message Data

Publish Message



• Topic Subscriber

– Defines callback function

– Listens for available topic (Name, Data Type, QoS)

Topics: Syntax

84

void msg_callback(const PathPosition& msg) {

  RCLCPP_INFO_STREAM(node->get_logger(), “Received msg: “ << msg);

}

auto sub = node->create_subscription(“/topic”, qos, msg_callback);

Callback Function Message Type Message Data  (IN)

Server Object Service Name Callback Ref



Namespaces

• ROS requires unique names for nodes/topics/etc.
• Namespaces allow separation:

– Similar nodes can co-exist, in different “namespaces”
– relative vs. absolute name references

85

robot_1

lft_camera

rt_camera

image

/rosout

image

/rosout

lft_camera/image

/rosout

rt_camera/image

robot_2

lft_camera

rt_camera

image

/rosout

image

/rosout

lft_camera/image

/rosout

rt_camera/image

/robot_1/lft_camera/image

/robot_1/rt_camera/image

/robot_2/lft_camera/image

/robot_2/rt_camera/image

/rosout



Qt

Instead of text editor and building 
from terminal…

Use an IDE! (detailed instructions here)

86

1. Launch QtCreator IDE from desktop shortcut
2. File -> New Project
3. Other Project -> ROS Workspace
4. Enter Project Properties:

1. Name = “ROS2_Training” (or whatever)
2. Distribution (should be auto-detected)
3. Build System = Colcon
4. Path = ~/ros2_ws

5. Build -> Build All
1. you should see success in the “Compile” tab

https://ros-qtc-plugin.readthedocs.io/en/latest/


fake_ar_pub

Exercise 1.4

Exercise 1.4
Subscribe to fake_ar_publisher 

87

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

AR pose
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